
WE4D-1 

Advanced Microwave Modeling Framework Exploiting Automatic 
Model Generation, Knowledge Neural Networks and Space Mapping 

Vijay Devabhaktoni, Biswarup Chattaraj, Mustapha C.E. Yagoub+, and Q.J. Zhang 

Department of Electronics, Carleton University, Ottawa, ON, KlS 5B6, Canada 
‘School of Infomation Technology & Engineering, University of Ottawa, Ottawa, ON, KIN 6N5, Canada 

Abstract - In this paper, we propose au efficient 
Knowledge based Automatic Model Generation (KAMG) 
technique, aimed at generating microwave neural models of 
highest possible accuracy using fewest accurate data. The 
technique is comprehensively derived to integrate three distinct 
powerful concepts$ namely, automatic mode, generation, 
knowledge neural nehvorks and space mapping. We utilize two 
types of data generators - fine data generaton that are 
accurate and slow (e.g., CPU-intensive 3DEM simulators); 
coarse data geuerstcws that are approximate and fast (e.g.. 
inexpensive ZD-EM). Motivated by the space-mapping concept, 
the KAMG utilizes extensive approximate data but fewest 
accurate data to generate neural models that accurately match 
tine data. Our formulation exploits a variety of kuowledge 
network architectures to facilitate reinforced neural network 
learning fmm both coarse and fine data. During neural model 
generation by KAMG, both coarse and tine data generators are 
automatically driven using adaptive sampling. The proposed 
technique is demonstrated through examples of MOSFET, and 
embedded passives used in multi-layer PCBs. 

1. INTRODUCTION 

Recently, a neural network based CAD approach has 
been introduced for microwave modeling and design [I]- 
151. Neural models are developed from microwave data 
through a process called training. These models are used 
during design to provide fast estimation of device/circuit 
behaviors [Z]. Neural network techniques have been 
applied to a wide variety of microwave problems, e.g., 
transistors [2], embedded passives [3], CPW bends [4] and 
filters (51. Reliable CAD solutions need accurate neural 
models, which in turn, require lots of accurate training 
data. For example, an embedded capacitor neural model 
with 3D accuracy requires lots of expensive training data 
from a detailed 3D-EM simulator. 

Several techniques have been developed to reduce 
the need for expensive data. The Automatic Model 
Generation (AMG) algorithm [3] uses fewer data by 
avoiding unnecessary samples in smooth sub-regions 
of the input space. Knowledge networks such as 
Knowledge Based Neural Networks (KBNN) [l] and 
Prior Knowledge Input (PKI) method [4] utilize 
existing knowledge (e.g., empirical models), thereby 
reducing the need for expensive training data. 

For the first time, we propose a robust KAMG technique 
that takes advantage of multiple data generators. We 
define the approximate and accurate data generators as 
coarse and fine data generators respectively. Motivated by 
space-mapping optimization concept [6], the proposed 
technique achieves efficient neural model generation 
through extensive use of coarse data together with fewest 
tine data. Knowledge networks are exploited to enable 
coarse and fine data to best contribute toward reinforced 
neural network learning. The KAMG framework allows 
the use of a variety of knowledge neural nehvork 
architectures such as Difference Method (DM), KBNN, 
PKI and Space Mapped Neural Networks (SMNN) [5]. 
Stage-wise training and adaptive data sampling of AMG 
are used to automate neural model generation by KAMG. 

II. PROPOSED KAMG TECHNIQUE 

Let x and y represent input and output vectors of a 
microwave modeling problem. Let y=g(x) and 
~=h(x,w) represent detailed EM/physics and neural 
model relationships between x and y, where g is a data 
generator, h is a neural network model, and w is the neural 
model weight vector. During neural network training, w is 
adjusted such that the error betweeny and v is minimized. 
Let coaxse and tine data generators be denoted by g, and 
gJ respectively. For example, x could represent length of 
an embedded capacitor; g,(x) and g/(x) could represent 
S,, computed from 2D and 3D-EM respectively. We define 
h, , h, , and h, as coarse, sub, and overall (fine) neural 
models. The objective of KAMG technique is to generate an 
accurate overall neural model hf by extensive utilization of 

g, ami minimal use of g, The proposed KAMG technique 
includes three major phases. 

In the first phase, the KAMG techmque generates a coarse 
neural model v, = h,(x,w,) , where we denotes weight 
parameters of the coarse model. The training objective here 
is to minimize the difference between coarse data generator 
outputs and coarse neural model outputs, i.e., 
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by adjusting We , where L, represents the set of coarse 
training data. Set L, is empty initially, and is periodically 
updated during training by adaptive sampling and 
automatic driving of g, (e.g., 2D-EM simulator). Worst 
sub-regions of the model input space are identified, and 
incremental training data are generated using a dynamic 
composite grid following our original AMG [3]. Coarse 
neural model h, is trained using g, extensively, because 
it is inexpensive. Neural model h, captures pimary or 
dominant portions of the original x-y relationship. 

The principle idea of KAMG is to systematically 
constmct a knowledge neural netwoik that could enable 
coarse information from h, and fine data from g, to 
harmonize neural network learning. Several existing 
knowledge architectures including DM, KBNN, PKI and 
SMNN have all been incorporated into our formulation. 

In the second phase, a sub neural model h, is initialized 
through a simple training process reusing Lc from the first 
phase. Training objective for initialization is: 

$$ll’W(x,ws)I( (2) 

for Difference Method, 

“$$;c-hs(vs)ll (3) 

for KBNN, 

$p- s h (-6, > wg 111 (4) 

for PKI, and 

“$$llx-hs(X.“t)ll (5) 

for SMNN, by adjusting We KAMG then utilizes h, and 
h, to construct an initial overall neural model as 

y”, =h,(x,w,)=h/(x,w,,w,). (6) 

For example, initial neural model is given by, 

h/(x,w,,w,) = hc(x,wc) + h,(wi) (7) 

for Difference Method and 

h,(x,w,, w,)=h,(h,(v,), w,) @ h,kw,) (8) 

for KBkN. Here, h,(x,ws) is region network that defines 
boundaries in x-space and 8 is a gating operator [l]. 
Initial neural models for PKl and SMNN are given by, 

h,kw,,w,) = h,(x>h,(v,)>w,) (9) 

and 

h/(w,,w,) = h,(h,(v,)> wc). (10) 

Through trainings in second phase, KAMG ensures 
that the initial overall neural model nearly equals 
coarse neural model, i.e., 

h,(x,w=.W.)~‘h,(x,w,). (11) 

As such, initial overall neural model hf can be at 
least as accurate as the existing coarse model, before 
using any tine data. 

In the third phase, initial overall neural model h, 

is further trained (refined) using fine data from g,-. 
The KAMG emphasizes on capturing the problem 
behaviors missed in the first phase (i.e., those missing 
in coarse data generator or coarse neural model). The 
training objective is to minimize the difference 
between fine data generator outputs and overall 
neural model outputs, while keeping the coarse 
portion of h, fixed, i.&., 

where L,represents the set of fme training data. Set Lfis also 
empty initially, and is updated by adaptive sampling and 
automatic driving of gl (e.g., 3D-EM simulator). By 
exploiting knowledge architectures, the KAMG technique 
performs training using fewest fine data, i.e., Size(LI) << 
Size(L,). In the third phase training, w$ is adjusted while 
we remains fixed. The proposed KAMG technique is 
illustrated in Figure 1. 
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: SubNeural Model 
! (h,) Initialization 

Fig. I. Flow-chart of the proposed KAMG technique. 
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III. EXAMPLES 

A. MOSFET Neural Model Development Using Circuit 
Based and Physics Based Data Generators 

This example illustrates development of MOSFET 
neural models with physics-level accuracy, but without 
using too much physics-based expensive training data. 
Input x contains drain and gate voltages. Drain current is 
the only neural model output y. Equivalent circuit model 
[7] is used as COBIS~ data generator and physics-based 
simulator [8] is used as tine data generator. 

The KAMG technique is applied to various knowledge 
architectures. As can be seen in Figure 2, all the neural 
models from KAMG achieved better accuracies with fewer 
expensive data, as compared to newal model from AMG. 
For a given model accuracy, the KAMG requires fewer 
fine data than AMG and conventional grid-based manual 
neural modeling approach, as shown in Table I. Table II 
shows that the proposed KAMG models outperform 
corresponding conventional knowledge models, when only 
a few accurate data are available. 
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Fig. 2. Accuracy cornpads& of MOSFET neural models 
generated by proposed KAMG and existing AMG techniques. 
KAMG a&wed better accuracies with fewer tine data. 

TABLE I. COMPARISON 0; FINE DATA NEEDED BY 
VARIOUS NEURAL MODELING TECHNIQUES TO ACHIEVE 

MOSFET MODELS WITH 0.50% TEST ERROR. 

TABLE II. ACCURACY COMPARISON BETWEEN MOSFET 
NEURAL MODELS DEVELOPED BY VARIOUS MODELING 

TECHNIQUES USING 23 FINE DATA. 

B. Embedded Resisror Neural Model Development Using 
Planar-EMond 3D-EM Data Generators 

Fast and accurate modeling of 3D-EM behaviors of 
embedded passives is important for multi-layer PCB 
design. Resistor length and signal frequency are input 
parameters, and S-parameters are neural model outputs. 
Planar EM simulator [9] is used as coarse data generator 
and 3D-EM simulator [IO] is used as fine data generator. 
Figure 3 and Table III demonstrate that the proposed 
KAMG technique uses fewer tine (expensive) data to 
achieve a given neural model accuracy, as compared to 
both AMG without knowledge and conventional training. 

In a worst situation, i.e., when fine data is unavailable to 
the user, neural models from KAMG are at least as 
accurate as coarse neural model. For the embedded 
resistor, all the KAMG neural models exhibit 7.02% 
average test error, before training with any tine data. 

0 9 16 27 36 44 

No. of Fine Samples 

Fig. 3 Accuracy comparison of embedded reustOr neural models 
generated by proposed KAMG and existing AMG. 
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TABLE III. ACCURACY COMPARISON BETWEEN RESISTOR 
NEURAL MODELS DEVELOPED BY VARIOUS MODE~G 

TECHNIQUES USING 18 FINE DATA. 

C. Embedded Capacitor Neural Model Developmenr 
Using Planar-EM and 3D-EM Data Generators 

Embedded capacitor used in multi-layer PCBs is 
considered. The input x includes capacitor length and 
signal frequency. Real and imaginary parts of S- 
parameters are the model outputs y. Planar EM simulator 
[9] is used as coarse data generator and 3D-EM simulator 
[IO] is used as tine data generator. Figure 4 shows that the 
proposed KAMG technique yields neural models with 
better accuracies as compared to AMG, when same 
amounts of tine data are used. As a result, data generation 
time (CPU) is significantly reduced as can be see” in 
Table IV. 

TABLE IV. COMPARISON OF FINE DATA NEEDED BY 
VARIOUS NEURAL MODELMG TECHNIQUES TO ACHIEVE 

CAPACITOR MODELS WITH 1% TEST ERROR. 

1 Neural Modeling 1 No.of 1 CPUfor Data 1 

Proposed KAMG-KBNN 1 14 I 70 min 
Proposed KAMG-PKI 1 24 1 120”li” 
Proposed KAMG-SMNN 1 23 I 115min 

IV. CONCLUSIONS 

We proposed an advanced KAMG technique for 
automatic generation of knowledge based neural models. 
The technique integrates powerful concepts such as AMG, 
knowledge neural nehvorks, and space mapping, into a” 
even mnre powerful framework. Motivated by the space- 
mapping concept, the KAMG exploits both coarse and tine 
data generators for efficient neural model development. A 
variety of knowledge architectures have been utilized to 
accomplish reinforced neural network training from cnarse 
and fine data. The KAMG is further strengthened by 

automation through adaptive sampling. For a given model 
accuracy, the proposed technique uses fewest tine data as 
compared t” all other existing techniques including AMG 
and conventional knowledge methodologies. Fewer tine 
training data translates into significantly reduced CPU 
time for data generation, thus resulting in faster model 
development. 
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Fig. 4. Accuracy comparison of capacitor neural models 
generated by proposed KAMG and existing AMG techniques. 
KAMG achieved bener accuracies with fewer tine data. 
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