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Abstract — In this paper, we propose an efficient
Knowledge based Automatic Model Generation (KAMG)
technique, aimed at generating microwave neural models of
highest possible accuracy using fewest accurate data, The
technique is comprehensively derived to integrate three distinct
powerful concepts, namely, automatic medel generation,
knowledge neural networks and space mapping. We utilize two
types of data generators — fine data gemerators that are
accurate and slow (e.g., CPU-intensive 3D-EM simulators);
coarse data generators that are approximate and fast (e.g.,
inexpensive 2D-EM). Motivated by the space-mapping concept,
the KAMG utilizes extensive approximate data but fewest
accurate data to generate neural models that accurately match
fine data. Our formulation exploits a variety of knowledge
network architectures to facilitate reinforced neural network
learning from both coarse and fine data, During neural model
generation by KAMG, hoth coarse and fine data generators are
automatically driven wsing adaptive sampling. The proposed
technique is demonstrated through examples of MOSFET, and
embedded passives used in multi-layer PCBs.

I. INTROBUCTION

Recently, a neural network based CAD approach has
been introduced for microwave modeling and design [1]-
[5]. Neural models are developed from microwave data
through a process called training. These models are used
during design to provide fast estimation of device/circuit
behaviors [2]. Neural network techniques have been
applied to a wide variety of microwave problems, e.g.,
transistors [2], embedded passives [3], CPW bends [4] and
filters [5]. Reliabie CAD solutions need accurate neural
models, which in turn, require lots of accurate training
data. For example, an embedded capacitor neural model
with 3D accuracy requires lots of expensive training data
from a detailed 3D-EM simulator.

Several techniques have been developed to reduce
the need for expensive data. The Automatic Model
Generation (AMG) algorithm [3] uses fewer data by
avoiding unnecessary samples in smooth sub-regions
of the input space. Knowledge networks such as
Knowledge Based Neural Networks (KBNN) [1] and
Prior Knowledge Input (PKI) method [4] utilize
existing knowledge (e.g., empirical models), thereby
reducing the need for expensive training data.

For the first time, we propose a robust KAMG technique
that takes advantage of multiple data generators. We
define the approximate and accurate data generators as
coarse and fine data generators respectively. Motivated by
space-mapping optimization concept [6], the proposed
technique achieves efficient neural model generation
through extensive use of coarse data together with fewest
fine data. Knowledge networks are exploited to enable
coarse and fine data to best contribute toward reinforced
neural network leaming, The KAMG framework allows
the use of a variety of knowledge neural network
architectures such as Difference Method {(DM), KBNN,
PKI and Space Mapped Neural Networks (SMNN) [5].
Stage-wise training and adaptive data sampling of AMG
are used to automate neural model generation by KAMG.

I1. PROPOSED KAMG TECHNIQUE

Let x and y represent input and output vectors of a
microwave modeling problem. Let yp=g(x) and
¥ = h(x,w) represent detailed EM/physics and neural
model relationships between x and p, where g is a data
generator, # is a neural network model, and w is the neural
model weight vector. During neural network training, w is
adjusted such that the error between y and ¥ is minimized.
Let coarse and fine data generators be dencoted by g, and
& respectively. For example, x could represent length of
an embedded capacitor; g, (x) and g (x) could represent
81y computed from 2D and 3D-EM respectively. We define
h,, h,,and h, as coarse, sub, and overall {(fine) neural
models. The objective of KAMG technique is to generate an
accurate overall neural model A ! by extensive utilization of
£. and minimal use of g s The proposed KAMG technique
includes three major phases.

In the first phase, the KAMG technique generates a coarse
neural model J, = h,(x,w,), where w, denotes weight
parameters of the coarse model. The training objective here
is to minimize the difference between coarse data generator
outputs and coarse neural model outputs, i.c.,

min Y [lg, (x) = (x| M
xel,
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by adjusting w,, where L, represents the set of coarse
“training data. Set L, is empty initially, and is periodically
updated during training by adaptive sampling and
automatic driving of g, {(e.g., 2D-EM simulator). Worst
sub-regions of the model input space are identified, and
incremental training data are generated using a dynamic
composite grid following our original AMG [3]. Coarse
neural model k&, is trained using g, extensively, because
it is inexpensive. Neural model h, captures primary or
dominant portions of the original x-y relationship.

The principle idea of KAMG is to systematically
construct 2 knowledge neural netwotk that could enable
coarse information from k, and fine data from g, to
harmonize neural network learning. Several existing
knowledge architectures including DM, KBNN, PKI and
SMNN have all been incorporated into our formulation,

In the second phase, a sub neural model A, is initialized
through a simple training process re-using L. from the first
phase. Training objective for initialization is:

min 3 |0k, (xw,) | @)
* oxel,
for Difference Method,
min Y || ¥. ~ b (xw) | (3)
b xel,
for KBNN,
min ) [ 7o~k (6.5, w) | )
* xel,
for PKI, and
rr'lvinznx—hs(x,ws)” (5)
T xel,

for SMNN, by adjusting w_ . KAMG then utilizes A_ and
h, to construct an initial overall neural model as

Yy =hxwp)=he(ewe,w). (6)
For example, initial neural model is given by,
ho(x,we,w) = h(x,w.) + By(x,w,) M
for Difference Method and
hp(xwe,w )=h(h(ew. ) w,) @ h, (x,w) (8)
for KBNN. Here, h,{(x,w,)is region network that defines

boundaries in x-space and @ is a gating operator [1].
Initial neural models for PKI and SMNN are given by,

hp(xwo,w) = h(x b (x,w.),w) %)

and
hf(x’wcvw.r) = hc(hs(x’w.r): wc) . (10)

Through trainings in second phase, KAMG ensures
that the initial overall neural model nearly equals
coarse neural model, i.e., '

hf(x,wc,ws)zhc(x,wc). : {1

As such, initial overall neural model k, can be at
least as accurate as the existing coarse model, before
using any fine data.

In the third phase, initial overall neural model A,
is further trained (refined) using fine data from g,.
The KAMG emphasizes on capturing the problem
behaviors missed in the first phase (i.e., those missing
in coarse data generator or coarse neural model). The
training objective is to minimize the difference
between fine data generator outputs and overall
neural model outputs, while keeping the coarse
portion of h, fixed, i€,

nlinZ"gf(x)—hf(x,wc,ws) (12)
: xely

where Lyrepresents the set of fine training data. Set Ly1s also
empty initially, and is updated by adaptive sampling and
automatic driving of g, (e.g, 3D-EM simulator). By
exploiting knowledge architectures, the KAMG technique
performs training using fewest fine data, i.e., Size(l) <<
Size(L,). In the third phase training, w is adjusted while

w, remains fixed. The proposed KAMG technique is
illustrated in Figure 1.
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Fig. 1. Flow-chart of the proposed KAMG technigue.
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III. EXAMPLES

A. MOSFET Neural Model Development Using Circuit
Based and Physics Based Data Generators

This example illustrates development of MOSFET
neural models with physics-level accuracy, but without
using too much physics-based expensive training data,
Input x contains drain and gate voltages. Drain current is
the only neural model output y. Equivalent circuit model
[7] is used as coarse data generator and physics-based
simulator [8] is used as fine data generator.

The KAMG technique is applied to various knowledge
architectures. As can be seen in Figure 2, all the neural
models from KAMG achieved better accuracies with fewer
expensive data, as compared to neural model from AMG.
For a given model accuracy, the KAMG requires fewer
fine data than AMG and conventional grid-based manual
neural modeling approach, as shown in Table 1. Table II
shows that the proposed KAMG models outperform
corresponding conventional knowledge models, when only
a few accurate data are available.
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Neural Model Test Error
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No. of Fine Samples

Fig. 2. Accuracy comparison of MOSFET neural models
generated by proposed KAMG and existing AMG techniques.
KAMG achieved better accuracies with fewer fine data.

TABLE I. COMPARISON OF FINE DATA NEEDED BY
VARIOUS NEURAL MODELING TECHNIQUES TO ACHIEVE
MOSFET MODELS WITH 0.50% TEST ERROR.

TABLE JI. ACCURACY COMPARISON BETWEEN MOSFET
NEURAL MODELS DEVELOPED BY VARICUS MODELING
TECHNIQUES USING 23 FINE DATA,

Neural Modeling Technique | No. of Fine Data Used
Conventional training 66
AMG (without knowledge) 49
Proposed KAMG-DM 32
Proposed KAMG-KBNN 23
Proposed KAMG-PKI 25
Proposed KAMG-SMNN 14

Neural Modeling Technique Test Error
Conventional training 3.82%
AMG (without knowledge) 1.00%
Conventional DM 1.53%
Proposed KAMG-DM 0.65%
Conventional KBNN 0.59%
Proposed KAMG-KBNN 0.48%
Conventional PKI 0.92%
Proposed KAMG-PKI 0.52%
Conventional SMNN 0.45%
Proposed KAMG-SMNN 0.25%

B. Embedded Resistor Neural Model Development Using
Planar-EM and 3D-EM Data Generators

Fast and accurate modeiing of 3D-EM behaviors of
embedded passives is important for multi-layer PCB
design. Resistor length and signal frequency are input
parameters, and S-parameters are neural model outputs.
Planar EM simulator {9] is used as coarse data generator
and 3D-EM simulator [10] is used as fine data generator.
Figure 3 and Table III demonstrate that the proposed
KAMG technique uses fewer fine (expensive) data to
achieve a given neural model accuracy, as compared to
both AMG without knowledge and conventional training.

In 2 worst situation, i.e., when fine data is unavailable to
the user, neural models from KAMG are at least as
accurate as coarse neural model. For the embedded
resistor, all the KAMG neural medels exhibit 7.02%
average test error, before training with any fine data.
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Fig. 3 Accuracy comﬁarison of embedded resistor neural models
generated by proposed KAMG and existing AMG.
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TABLE IIl. ACCURACY COMPARISON BETWEEN RESISTOR
NEURAL MODELS DEVELOPED BY VARIOUS MODELING
TECHNIQUES USING 18 FINE DATA.

Neural Modeling Technique Test Error
Conventional training 2.85%
AMG (without knowledge) 1.65%
Proposed KAMG-DM 1.02%
Proposed KAMG-KBNN - 0.65%
Proposed KAMG-PKI 0.42%
Proposed KAMG-SMNN 0.95%

C. Embedded Capacitor Neural Model Development
Using Planar-EM and 3D-EM Data Generators

Embedded capacitor used in multi-layer PCBs is
considered. The input x includes capacitor length and
signal frequency. Real and imaginary parts of S-
parameters are the model outputs y. Planar EM simulator
[9] is used as coarse data generator and 3D-EM simulator
[107 is used as fine data generator. Figure 4 shows that the
proposed KAMG technique yields neural models with
better accuracies as compared to AMG, when same
amounts of fine data are used. As a result, data generation
time (CPU) is significantly reduced as can be seen in
Table IV.

TABLE IV. COMPARISON OF FINE DATA NEEDED BY
VARIOUS NEURAL MODELING TECHNIQUES TO ACHIEVE
CAPACITOR MODELS WITH 1% TEST ERROR.

Neural Modeling No.of | CPU for Data
Technique Fine Data | Generation
Conventional training 125 625 min
AMG (without knowledge) 96 480 min
Proposed KAMG-DM 48 240 min
Proposed KAMG-KBNN 14 70 min
Proposed KAMG-PKI 24 120 min
Proposed KAMG-SMNN 23 115 min

IV. CONCLUSIONS

We proposed an advanced KAMG technique for
automatic generation of knowledge based neural models.
The technique integrates powerful concepts such as AMG,
knowledge neural networks, and space mapping, into an
even more powerful framework. Motivated by the space-
mapping concept, the KAMG exploits both coarse and fine
data generators for efficient neural model develepment. A
variety of knowledge architectures have been utilized to
accomplish reinforced neural network training from coarse
and fine data. The KAMG is further strengthened by

automation through adaptive sampling. For a given model
accuracy, the proposed technique uses fewest fine data as
compared to all other existing techniques including AMG
and conventional knowledge methodologies. Fewer fine
training data translates into significantly reduced CPU
time for data generation, thus resulting in faster model
development.
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Fig. 4. Accuracy comparison of capacitor neural models
generated by proposed KAMG and existing AMG techniques.
KAMG achieved better accuracies with fewer fine data.
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